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Abstract. We propose unified branch-and-bound and cutting plane algorithms for global minimization 
of a function f(x, y) over a certain closed set. By formulating the problem in terms of two groups of 
variables and two groups of constraints we obtain new relaxation bounding and adaptive branching 
operations. The branching operation takes place in y-space only and uses the iteration points obtained 
through the bounding operation. The cutting is performed in parallel with the branch-and-bound 
procedure. The method can be applied implementably for a certain class of nonconvex programming 
problems. 

Key words. Branch-and-bound, cutting plane, decomposition, convex-concave function, global 
optimization. 

I. Introduction 

Cutting plane methods are fundamental tools in mathematical programming. The 
first cutting plane methods were introduced by Cheney and Goldstein [5], and 
Kelley [17]. Since then several modifications were proposed to improve speed of 
convergence, to avoid accumulation of constraints, and to handle nondifferenti- 
able functions (see, e.g. [4, 8, 9, 10, 18, 22, 28]). Recently, cutting plane methods 
have been applied for solving a broad class of nonconvex optimization problems 
[14, 16, 21, 22, 25, 30, 32]. 

Another basic approach used widely in integer and nonconvex programming 
problems are branch-and-bound methods, where sequences of decreasing upper 
bounds and increasing lower bounds for the optimal value are constructed by 
successively refined partitions of the feasible region and corresponding estimation 
procedures. 

Falk and Soland [7] developed a branch-and-bound method for solving certain 
nonconvex programming problems having compact, convex feasible sets and 
separable objective functions. This method was extended further by Soland in [27] 
to handle separable nonconvex constraints. A1-Khayyal and Falk [1] used the idea 
of Falk and Soland [7] to obtain an algorithm for solving biconvex programming 
problems with jointly convex constraints. McCormick [20] considered the global 
optimization problem dealing with factorable functions. An underestimating 
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function of a factorable function was calculated in [20], under which a branch- 
and-bound algorithm for solving factorable programs was described. A more 
general branch-and-bound scheme was proposed by Horst [12] which can be used 
for solving a fairly broad class of nonconvex programming problems. The 
bounding operations used in these methods were based on underestimating 
functions of the objective function, most of them used the convex envelope 
function. In [29] Thoai, Tuy and in [32] Tuy, Thieu, Thai proposed branch-and- 
bound methods for minimizing a concave function over a polyhedron and over a 
convex set using a bounding operation based on the fact that the minimum of a 
concave function on a polyhedron, if finite, is attained at a vertex of the 
polyhedron. Recently Muu and Oettli [22, 23] have proposed branch-and-bound 
methods for minimizing indefinite quadratic functions and convex-concave func- 
tions over a convex set. The bounding operations used in these methods are based 
on a suitable relaxation of the constraints. Rather general branch-and-bound 
schemes can be found in [3, 14, 16, 31]. 

Numerical experience indicates that in nonconvex optimization problems both 
cutting plane methods and branch-and-bound methods and their combinations are 
efficient only for problems with moderate size. To overcome this drawback 
several decomposition methods were proposed (see, e.g. [2, 23, 25, 26]). 
Decomposition approaches were used earlier in linear and convex programming 
by Dantzig and Wolfe [6]. 

In this paper we shall present a combined cutting plane and branch-and-bound 
method for solving the following problem: 

(P) min{f(x, y): g(x, y) <~ O, (x, y) E S},  

where f, g: Rn•  ~m_.._> ~ are continuous, and 

S:={(x,y) 

being a convex function on ~n • ~m (hence continuous). 
Using the fact that Problem (P) has two groups of variables x and y and two 

types of constraints g(x, y) <~ O, (x, y) ~ S we obtain a new relaxation bounding 
and adaptive branching operation by using a separation function. By choosing 
specific forms of this separation function we obtain different bisections; all of 
them use the iteration points obtained through the bounding operation. The 
branching operation is performed in y-space only, and therefore it allows us to 
decompose certain nonconvex problems of the form (P) into convex subprograms 
in (x, y)-space and nonconvex subprograms in y-space. This suggests to apply the 
method when the dimension of y-space is relatively small, even though the 
dimension of x-space may be fairly large. 

The cutting, as usually, is introduced to approximate the convex set S by 
polyhedral convex sets, but here it is performed in parallel with the branch-and- 
bound procedure. The algorithm first is described as a conceptual method without 
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reference to implementation. We then specialize it to several cases to obtain 
implementable algorithms for minimizing a convex-concave function over a 
convex set and solving convex programs with an additional convex-concave 
constraint. 

2. Description of the Algorithm 

We denote by G the feasible domain of Problem (P). We assume that we have 
fixed two compact polyhedra X C  R n, Y C  ~m such that X x Y contains the 
feasible region G of Problem (P). Such polyhedra can be constructed by standard 
methods of convex programming (see, e.g. [4, 25]) if S, in addition, is compact 
(very often in practical problems). Let f ,  denote the optimal value of (P) (we 
always adopt the convention that an optimal value equals ~ if no feasible points 
exist). 

Given two convex polyhedra B C Y and T D S we define Problem P(B, T) as 

min{f(x, y): x E X ,  y E B ,  g(x, y)<~O, (x, y )E T ) ,  

and its relaxed problem as 

R(B,T)  min{f(x,y): x E X ,  y E B ,  g(x,y)<~O, uEB ,  ( x , u ) E T } .  

By fl(B, T) we denote the optimal value of R(B, T). Due to our compactness 
assumption, whenever/3(B, T) < ~ then R(B, T) has an optimal solution. By a~_ 1 
we shall denote the least upper bound for f .  known at the beginning of iteration 
k. 

Roughly speaking the algorithm runs as follows: At  a typical step k, say, we are 
given a polyhedral convex set T k D S and a collection F k of subsets B Q Y, all 
described by affine inequalities, such that any optimal solution of (P) is contained 
in X • U {B: B E Fk}. Since fl(B, Tk) cannot be higher than the optimal value of 
P(B, Tk) this implies that f . / >  min{fl(B, Tk): B E Fk}. For all B E F k the relaxed 
problem R(B, T~) should be solved. If ~(B, Tk) >i %, then B is deleted from F k. 
Out of the remaining sets one, say Bk, is selected such that fl(Bk, Tk)= 
min{/J(B, Tg): B E Fk}. Now either we cut off part of Tk, thus obtaining a subset 
Tg§ such that S C Tk+I, or we bisect Bk, thus obtaining two complementary 
subsets B~ and B k of B k. We replace B~ by {B-~,Bk} to obtain Fk+ 1. The 
algorithm may terminate finitely; it will do so in particular if f .  = oo. 

For describing the method we need a continuous function ~(x, y, u) defined on 
X x Y • E"~ such that 

~p(x, y , .  ) is convex, 

g,(x, y, y) = O, 

{ f(x, u) <~ f(x, y) , 
q,(x, y, u) <~ 0 ~ [g(x, u) <~ g(x, y) . 
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Then in iteration k, given (x k, yk, U k) E X  X Y x Y, we shall use a function lk(" ) 
defined on R m by 

lk(v) : = (tk, v _ y k } ,  1 
t k ~ O~bk(uk), ~bk(U) := O(X k, yk, U). J (1) 

The following properties (only) of lk(. ) will be utilized: 

(i) lk(. ) is affine. If lk(U g) <~ O, then ~(x k, yk, U g) <~ O. 
(ii) lk(Y k) = O. 

(iii) There exists a constant M such that IlVl ll M for all k. 
(iv) If (x k, yk, uk)__._~ (X, y, U) and lim SUpg__,= Ik(U g) <~ 0, then f(x, u) <~f(x, y), 

g(x, u) <~ g(x, y). 

Property (i) follows from 

lg(u k) = (t k, u k _ yk) >~ O(X k, yk, U k) _ tp(X k, yk, yk) 

= ~b(X k, yk, uk).  

Property (ii) is obvious. 
Property (iii) follows from 

IlVlkll = IIt ll = (t k, tk/lltkl]) 
<~ ~b(x k, yk, U k + t~ / l l t~ l l  ) _ ~(x ~, yk, U g) 

~< const., 

the last inequality being due to the fact that ~b is continuous and the arguments of 
remain within a compact set. To verify (iv) we use once more that 

lk(U k) >i O(X k, yk, uk) , 

and continuity of ft. Then from the hypothesis of (iv) follows ~(x, y, u) <~ 0, and 
therefore f(x, u) <~ f(x, y), g(x, u) <~ g(x, y). 

Simple examples for ~b and l e will be given in paragraph 3 below. The algorithm 
can now be described in detail. 

A L G O R I T H M  

Initialization. With the two convex polyhedra B o := Y and T o D S (for instance 
T 0:= Rn•  W ~, or T o : = S  if S is a polyhedral convex set) solve Problem 
R(B o, To). If /3(B o, To) = w, terminate: Problem (P) has no feasible point. 
If [3(Bo, To) < o% let (x ~~ yBO, uaO) be the obtained optimal solution of R(B o, To). 
Let a_ 1 := oo and F 0 := {B0}. 
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Iteration k (k = 0, 1 , . . . ) .  At  the beginning of iteration k we have a collection F k 
of convex polyhedral subsets B C B 0 such that every solution of (P) is contained 
in X x t.J {B: B E Fk}, and we have a polyhedron T k D S. For each B E F k we 
know f ( B ,  Tk) and, if f ( B ,  Tk) < 0% we know an optimal solution (x B, yB, u s)  of 

R(B, Tk). Furthermore  %-1 ~>f. is at hand. 
Let  

F k := {(x B, vB): v B ~ (y~,  uB}, (X s, V B) E G, B E Fk} , 

% := min(ak_l ,  min(f (x ,  u) : (x, u) E Fk} ) 

( the currently known smallest upper bound for f , ) ,  and, if ak < 0% let (~k, ~Tk) 

be the best feasible point known so far so that f (~k,  ~Tk)= ak" Let 

A k := {B E F k : f l ( B  , Ta)~<ak}. 

Select B k ~ Ak such that 

fl(Bk, Tk) = min{ f (B ,  Ta) : B E Ak}. 

Let  fk := f (B~,  Tk). 
(1) If fk  >~ %, terminate: f .  = a k. If a k < ~, then (~k, ~?k) is an optimal 

solution of (P) and if a k = ~, then (P) has no feasible point, a 
(2) If fk < a~, then let (xk,y k, U k) := (X B~, yBk, UB0, and let lk(. ) be given 

according to (1). 

[Note that flk = f (  x~, Yk)-I 
(2a) If lk(u k) <~ O, then set Fk+ 1 := A k and go to (3). 

[Note that in this case (x k, uk)~_S, because otherwise from (i) (x k, u k) is feasible 

for (P) and one has f (x  ~, u ~) ~ f (x  k, yk) = fk. Hence ak <~f(x k, u k) <- Big, which 
contradicts the hypothesis of (2).] 

(2b) If Ik(U k) > O, then set c k := lk(Uk)/2 and let 

B ~ - : = { y ~ B k : l , ( y ) < ~ c , } ,  B 2 : = { y E B k : l k ( y  )>ick}.  

[Note that yk ~ B2,  since lk(Y k) = 0 from property (ii) of lk, and u~ E B k+.] 
Let  

F k +  1 : =  (Ak\(Ok) ) [,..J {Ok,  O ; }  . 

(3) Set 

1Alternatively we may use strict inequality in the definition of A k and terminate if A k = 0. The case 
a k = f .  and no termination must then be treated separately (the remaining sets may no longer contain 
a solution). 
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Tk+l : :  

Tk, if (x k, u k) E S ,  
{(x, u) E Tg: q~(x k, u k) + tT(x -- X ~) + tf(u -- U k) <~ 0} otherwise,  

where (tl, t2) is a subgradient of q~ at (x k, u~). 
For each B E I'k+ 1 solve R(B, T k + l ) .  Go to iteration k + 1. 2 

This completes the description of the algorithm. 

COMMENT.  The just described algorithm can be considered as a combination of 
branch-and-bound and cutting plane methods. If the variable y is missing in 
Problem (P), then the algorithm becomes a pure cutting plane method. If T O = S 
(and thereby T k = S for all k), then the algorithm becomes a pure branch-and- 
bound method. 

A crucial operation in the above algorithm is the solution of the relaxed Problem 
R(B, Tk). This question will be discussed below for some special cases of Problem 
(P). Now we are going to give some examples for separation functions Ik(-) 
satisfying properties (i)-(iv). 

3. Examples for the Separation Function 

(1) Let  dp: ~m....~ ~ be a convex (hence continuous) function such that dp(0) = 0 
and qb(u) > 0  for all u ~ 0  (for instance O ( u ) =  Ilull or qb(u)= Ilul12). 
Let 

O(x, y, u) := O(u - y ) .  

Then ~# has all the properties requested. For instance, O(x, y, u )<~O~u  = 
y ~ f(x,  u) <~f(x, y) etc. Hence ~ can be used to define the separation function 
lk(. ) by means of (1). 

(2) Assume that f(x," ) and g(x, .)  are convex. Let 

~(x, y, u) := max{f(x, u) - f(x, y), g(x, u) - g(x, y)} .  

The 0 has the properties requested and so can be used to define l~(- ) by means of 
(1). 

(3) In the following example lk(" ) is not determined through (1). But Ik(" ) will 
still possess properties (i)-(iv) which are enough for performing the algorithm. 

Let  ~p(x, y, u) be as in example (1) or - if f(x," ) and g(x,. ) are convex - as in 

2If Zk+ 1 = T k we solve R(B, Tk+l) for each B~Fk+ILFk, since for B ~ F  k we have already solved 
R(B, Tk). 
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example (2). Let Ok(U) := qt(x k, yk,  u). Select t E d~Ok(uk). Select ]0 E { 1 , . . . ,  m} 
such that 

tjo( uk - Y~)io =max  tj(u k - yk)/ . 

Then define lk(V ) := t/o(v --yk)/o. It follows that 

1 
lk(U k) = t/o(U k -- yk)/o =max t/(u k -- y~)/>1 --m (t, u g -- yk) 

1 
>~--1 (Ok(Uk) _ ~k(yk)) = -m qj(x k, yk, u ~) 

m 

Therefore lk(u k) <~ 0 ~ O(x k, yk, u k) <~ O. From this and 

IlvZ ll = I1(0 , . . . ,  t / 0 , . . . ,  0)ll Iltll, 

it follows again that properties (i)-(iv) are fulfilled. 
This choice of lk(. ) is particularly practical, since it leads to rectangular 

subdivisions. In fact, the hyperplane 

{v Ilk(V) = lk(u k ) / 2 } ,  

which splits B k into B2 and B~-, becomes now 

{olvj0 = �89 k + yk)/0} . 

So, if B k is a rectangle, B2 and B~- are rectangles, too. 
In certain cases to be considered below the subproblems R(B,  T~) call for 

examining the vertices of B, and this task is greatly facilitated if the B are 
rectangles. 

4. Convergence of the Algorithm 

We turn now to the convergence of the above algorithm. From the construction of 
T k, it follows that S C Tk+ 1 C T k for every k. This implies/3 k ~</3~+ a ~<f, for all k. 
Henc e / 3 ,  := lira/3k exists and /3 ,  <~f,. If the algorithm terminates at iteration k, 
i.e., /3k >~ ak, then from a k ~>f, follows a~ =/3k = f , .  If the algorithm does not 
terminate then we have the following convergence result: 

T H E O R E M .  (a) fig Z f , ,  and {(x k, u~)} has a limit point  which solves (P). 
(b) I f  (x k, u k) is feasible for  almost all k, then a~ "~ f , ,  and every limit point  o f  

{(~k,~Tk)) solves (P). 
Proof.  (a) If fl~ = ~ for some k, then the algorithm terminates at iteration k 

and f ,  = ~ (Problem (P) has no feasible point). Thus if the algorithm does not 
terminate, then/3 k < ~ for all k. Since/3~ =/3(Bk, Tk) < ~, Problem R(B~, Tk) has 
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an optimal solution (x k, yk, uk). Note that (x k, u k) U T k for every k. This and the 
rule for constructing T k imply, by a standard argument (e.g. [4], p. 240), that any 
limit point of {(x k, uk)} belongs to S. We distinguish two cases. 

Case 1. The case 2b occurs only finitely often. In this case we may assume 
without loss of generality that case 2a occurs for all k. From case 2a follows 
lk(U k) ~ 0 for all k, hence lim s u p  Ik(U k) ~ O. Let (x*, y*, u*) be any limit point of 
{ (x k, yk, uk) }. Then g(x*, y*) <~ O. Hence we obtain from property (iv) of l k that 
f(x*, u*) <~f(x*, y*) and g(x*, u*) <~ O. Since f (x k, yk) = flk ~ f *  this implies 
f(x*, u*)~<f, .  Since (x*, u*)US,  (x*, u*) is feasible, and therefore f(x*, u*) = 
f , .  This and the monotonicity of {/3k} imply that/3 k/~ f , .  

Case 2. The case 2b occurs infinitely often. In this case there exists a nested 
subsequence of {Bk} which for the simple notation we also denote by {Bk}. By 
extracting subsequences if necessary, we may assume that (x k, y~, uk)---~ (X*, y*, 
/ , / * ) .  

If Bk+ 1 C Bk, then in particular u k+l U B~-, which implies 

l#(u k + l ) ~ c k = lk(uk) / 2 . 

Hence 

0 <. Ik(uk)/2 <~ lk(U k) -- lk(u k+l) <~ MII uk - uk+l l [ .  

If Bk+ 1 C B2, then in particular k+l - -  n+ Y ~ ~k ,  which implies 

Ik(Y k § l) >I c k = lk(uk) /2 . 

S i n c e  lk(Y k) = 0 it follows that 

0 <~ Ik(uk)/2 <~ tk(y k+l) -- lk(Y k) <<- M l l y  ~+1 - ykl l .  

Hence always lk(u k)--> O. From property (iv) it follows that f(x*, u*)<~f(x*, y*) 
and g(x*, u*)<~0. Since (x*, u*) is feasible the claim follows as in the previous 
case. 

(b) Assume now that (x k, u k) is feasible for all k large enough. From part (a) 
we see that {(x k, uk)} has a limit point (x*, u*) which solves (P). Since 
f ,  <~ ak =f(~k, *lk) <~f( xk, Uk) for every k large enough, and {%} is nonincreasing, 
it follows that any limit point of { ( ~ ,  ~Tk)} solves (P), and % ",a f , .  The theorem 
is proved. [] 

R E M A R K .  I f  g(x, y)= g(x) is independent of y and T O = S ,  t h e n  (x ~, u k) is 
feasible for every k. In fact in this case Problem R(B, S) reads 

min{f(x,  y): x E X ,  y E B ,  u E B ,  g(x)<~O, ( x , u ) E S } .  
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5. Subproblems 

The solution of R(B, T~) is crucial for implementing the algorithm. Here we 
collect some special cases where the subproblem R(B, Tk) can be solved, at least 
in principle, by available methods. 

(1) Assume that g(x, y) = g(x) is independent of y, that g is quasiconvex and 
that f(x, y) is convex in x and quasiconcave in y. Then from quasiconcavity 
follows 

min{f(x, y): y E B} = m  in f(x, v ' ) ,  

where v i are the vertices of B. Therefore 

[3(B, Tk)=min{f(x ,y):  x E X ,  y E B ,  g(x)<~O, u E B ,  (x ,u)ETk}  

= min{m/in f(x, v'): x E X, g(x) <~ O, u E B, (x, u) E Tk) 

=minmin{f(x,  vi): x E X ,  g(x)<~O, u E B ,  ( x , u )ETk} .  
i 

Hence the subproblem R(B, Tk) is reduced to finitely many convex programs 
(minimizing a convex function over a convex set), one for each vertex v/. 
R(B, Tk) simplifies further if f(x, y)=f~(x)+fz(Y); then 

/~(B, T~) = min{f~(x): x E X, g(x) <- O, u ~ B, (x, u) ~ Tk} +min fz(Vi), 

a single convex program combined with an examination of the vertices of B. Since 
B is generated from some predecessor B '  by adding one affine inequality, the 
vertices of B could be calculated (for small m at least) from those of B'  by some 
available methods, see, e.g. [13]. Of course, the vertices of B are determined 
explicitly if B is a rec tangle-  see example 3 above for the separation function. 
Finally if B is a rectangle, B := {y E Rm: a <~y ~< b}, and if fz(Y) is separable, 
fz(Y) := Ej fzj(Yj) with fzj a quasiconcave function of one variable, then 

min{fz(y): y E B} = ~] min(fzj(ai) , fzj(bj)} . 
J 

(2) Assume now that f(x, y) = f(x) is independent of y, that f is convex and that 
g(x, y) is quasiconvex in x and quasiconcave in y. Then from quasiconcavity 
follows 

min{g(x, y): y @ B} =rain g(x, v ' ) ,  

where v; are the vertices of B, and therefore 

~(B, Tl,)=min{f(x): x ~ X ,  y E B ,  g(x,y)<~O, u ~ B ,  (x ,u)E Tk} 

= min{f(x): x E X ,  rain g(x, v') <~ O, u C B, (x, u) E Tk} 
i 

=min min{f(x): x ~ X ,  g(x, v i) <~ O, u E B, (x, u) E Tk) . 
i 
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Hence for each v i it is required to minimize a convex function over a convex set. 
This simplifies further if g(x, y) := gl(x) + g2(Y)- Then 

f l (B,  Tk) = min{f(x): x E X ,  gl(x) + 3 / ~  O, u e B,  (x, u) e Tk} 

with 7 := m/in g2(v i) = min{g2(y): y E B}. 

REMARK.  One may replace the branching rule used in the algorithm by a 
nonadaptive branching rule which ensures that all sets B are simplices, provided 
B 0 is a simplex. Namely, if B k is a simplex, then let v k, w k be the vertices of B k 
such that the edge [v h, w k] is longest among the edges of B k. Then B2 and B2 
are obtained from B k by replacing v k and w k respectively by the midpoint of the 
edge [v k, Wk]. This bisection has the property that any nested subsequence of the 
simplices generated by it contracts to a single point (see, e.g. [12, 22, 29]). With 
this simplex bisection we have the following result: 

/3 k ,,~ f , ,  and each limit point of {(x k, uk)} solves (P) .  

To see this, let {(x k(j), yk(j), uk(J))}jC ~ be a subsequence of {(x k, yk, uk)} 
converging to (x*, y*, u*). Then there exists a nested subsequence {Bk(q)}q~N of 

{Bk} and a subsequence {Bk(j(q))}qe ~ of .{Bk(j) } such that Bk(j(q) ) C Bk(q) for all q 
_ _ k ( 1 ( q )  ) k ( l ( q ) )  . . . .  (see [22] for details). Consequently y , u E Bk(q) for all q. Since the 

nested subsequence Bk(q) contracts  to a point ~7, say, it follows that y* = u* = ~7. 
The claim follows then by the same argument as in the convergence theorem 
above. 

6. An Example 

We illustrate one possible realization of our method by the following example: 

m i n f ( x , y ) : =  - x  2 y2+  1 

subject to (x, y) E S := {(x, y) E N41~o(x, y) ..= x12 + x] + y l + y  2 2  2_  1 ~ 0 } .  

For solving this problem we shall use the rectangle branching (example 3 in the 
paper). 

Initialization: Take r 0 = {(x, y) E R41xl +x2 +Yl +Yz - 2~<0}, Bo = [0, 1] x 
[0, 1]. Then T O D S. The relaxed problem R(Bo, To) reads 

m i n { ( ~ -  x2) 2 y 1 - 1  I x l + x 2 ~ l ,  y@Bo, u ~ B o ,  ( x , u ) ~ T o }  

= min /3(y, To), 
YEV(B o) 
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w h e r e  V(Bo) deno tes  the ve r t ex  set of  B o, and 

[Xl+X2~<l, u ~ Bo, (x, u) ~ ro} . 

V(Bo) has  f o u r  vert ices (0, 0),  (0, 1), (1, 0) and (1, 1). 
A t  y = ( 0 , 0 )  we have  (x l /2 -x2) ( -1 /1)=x2-x l /2 .  Thus  

This  l inear  p r o b l e m  has an op t imal  solut ion x = (1, 0), u = (0, 0). 

H e n c e / 3 ( y ,  To) = - � 8 9  
A t  y = (0, 1), /3(y, To) = - � 8 8  with x = (1, 0),  u = (0, 0). 
A t  y = (1, 0) we have  

I( xl -1 /3(y, To) = min  -~- - x 2 , = 

wi th  x = (0, 1), u = (1, 0). 

A t  y = (1, 1), /3(y, To) = - � 8 9  with x = (0, 1), u = (1, 0). 

H e n c e  /3(Bo, To) :=  minycv(~o)/3(y, To) = - 1  with x = (0, 1), u = (1, 0),  y = 

(1, 0). Set F o = {Bo}. 
Iteration k = 0: ao = f ( 1 ,  0, 0, 0) = - � 8 9  and (G ~ ~/o) = (1, 0, 0, 0). h o := {B E 

rol/3(B, To)-< -�89 = (8o) = to.  T h u s / 3  0 = - 1  with x ~ = (0, 1), u ~ = (1, 0), yO = 
(1, o). 

We take  lo(v ) : = / j o ( V - y ~  o as in example  3 of  the  p a p e r  with t =  d/dullu- 
yoll21u~,o . 
T h u s  

lo(U ~ = 0 (since yO = uO), 

and  the re fo re  we arr ive at case (2a) of  the a lgor i thm.  H e n c e  F 1 = A o = {Bo}. 

Since (x ~ u~ we have  

d~(xO, u ~ 
r l  = (x, u) ~ rol~(x ~ u ~ + dx 

dq~(x ~ /,t o ) 
(u - Uo) ~< 0} + du 

= {(x, u) @ To[2X z + 2u I - 3 ~< 0} .  

X - -  X O) 

W e  c o m p u t e / 3 ( B ,  T 1) by  solving 

min  /3(y, T1) 
Y~V(B O) 
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where  

[3(y, T1):= 

For  each y ~ V(Bo) 
For  y = (0, 0), f l (y ,  
For  y = (1, 0), /3(y, 
For  y = (1, 1), fl(y, 
For  y = (0, 1), fl(y, 

m i n { ( ~ -  x2) 2 y 1 - 1  Ix1 + x 2 < 1 '  u ~ Bo, (x, u) e T1} . 

we c o m p u t e / 3 ( y ,  T1) and we get the following: 
T1) = - � 8 9  with x = (1, 0), u = (0, 0). 
T1) = - 1  with x = (0, 1), u = (0, 0). 
T1 ) = _ 1  with x = (0, 1), u = (0, 0). 
T1) = - � 8 8  with x = (1, 0), u = (0, 0). 

(Note  that  [3(y, T1) =f(x, y)) 
Hence  fi(Bo, r l )  -- - 1  with x = (0, 1), u = (0, 0) and y = (1, 0). 

Iteration k = 1: r I := {(x, u)lx I +x2 + ul + u2 - 2 < ~ 0 ,  2x2 + 2ul - 3~<0, xi, ui/> 
0 (i = 1, 2)}, F 1 = {B0}, /3(B 0, TI) = - 1 ,  x 1 = (0, 1), u I = (0, 0), yl  = (1, 0). Best  
upper  bound  a 1 = - � 8 9  best feasible point (~1, 7/1) = (1, 0, 0, 0). 
T h u s A  I = F  l = { B o } ,  /3 I = - I , B  I = B  0. 
Since a 1 >/31 and ll(u 1) = tjo(U 1 - yl) j  o = 2(]  o = 1) we go to case (2b) of i terat ion 
k. 
Then  B 1 = [0, �89 x [0, 1], B~- = [�89 1] x [0, 1], F 2 = { B [ ,  B~-}. 
Since (x 1, u 1) E S we have T 2 = T r 
We have to compute  [3(B~, T2) and 13(B 1, T:). 

f l(B],  T z ) : =  min min{(  x1 ) 2 y 1 - 1  ,~v(st~ - y -  x2 ~ Ix1 + x~ ~ 1, 

(x, u) ~ T2, u ~ . B [ } .  

1 0 , V(B?) = {(0, 0), ( ~ , ) ,  (�89 1), (0, 1)} 

For  each y ~V(B~)  we solve the linear program: 

�9 x 1  mm{(  x2) Y1-1 Ix1 +x2~< 1, (x,u)eT2, u 

For  y = (0, 0), fl(y, T2) = - � 8 9  with x = (1, 0), u : (0, 0). 
For  y = (�89 0), fl(y, T2) = 0 with x = (1, 0), u = (�89 0). 
For  y = (�89 1), [3(y, T2) = 0 with x = (1, 0), u = (�89 0). 
For  y = (0, 1), fl(y, T2) = - � 8 8  with x = (1, 0), u = (0, 0). 
Hence  [3(B[ , T2) = minyev(B~)[3(y, T2) = -�89 
To compute  [3(B~, T2) we solve, for each fixed y EV(B~) ,  the linear program: 

( (x1  '~ 2 Y l -  1 } 
/3(y, T 2 ) : = m i n  - ~ - - x 2 ]  y - - - ~  I x 1 + x 2 ~ < l , ( x , u ) ~ r 2 ,  u ~ B 1  

We get fl(B-(, T2) = - 1  at x = (0, 1), u = (�89 0), y = (1, 0). 
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Iteration k = 2 :  F2= {B~, B~-}, 13(B1, T 2 ) = - � 8 9  f l (B?,  T z ) = - 1 ,  x2 = (0, 1), 
u 2 = (�89 y2 = (1, 0); a z = - � 8 9  (r = (1, 0, 0, 0), A 2 = Fz, B 2 =B~-, 132 = - 1 .  
Since a 2 > 132 and 12(u 2) = maxj tj(u z - yZ)j = 1 we go to case (2b), and bisect B 2 
into B 2 and B ; :  8 2 = [�89 7}] • [0, 1], 8 2 = [7}, 1] • [0, 1]. Then F 3 = { B ; ,  B 2, 
B~}.  Since (x 2, u z) = (0, 1, 1 0 ) , ~ S  we have 

9 
-= { (x, u) E T212x2 q- Ul - --~ 4 0 } .  

For each B E F 3 we compute 13(B, T3). Since 13(B1, T2) = - � 8 9  = a2, the set B [  is 
deleted from further consideration. To compute 13(B~-, T3) we solve 

min min{(  xl ) 2 y 1 - 1  } ,ev(8~) T - x 2  ~ I(x'u) E T 3 ' X l + X z < - I ' u E B 2  " 

For each y ~ V ( B ; )  fixed, we solve the linear program 

[(Xl 1 } 
min - ~ - -  21 y 2 +  1 [ ( x ,u )ET3 ,  x , + x 2 < ~ l ,  u E B  2 , 

obtain 13(B2, T3) = -126 with the corresponding solution x = (0, ~), u = ( �89 
y = (7}, 0). Similarly 13(B2, T3) = -7} with x = (0, 7}), u = (~}, 0), y = (1, 0). 

I t e r a t i o n k = 3 : F  3 = { B  + § B2 } fl(B + T3 ) = _ I  1, B 2 ,  , 1 , -~, 13(B; ,  T 3 ) =  --1-~, 13(B; ,  
T 3 ) = - 7 } .  Hence B 3 = B ; ,  1 3 3 = - 3  , a 3 = a 2 = - � 8 9  (r = (1, 0, 0, 0); x3=  
(0, 7}), u3=(7} ,0) ,  y 3 = ( 1 , 0 ) .  We terminate the algorithm and obtain an 
approximate solution (r  = (1, 0, 0, 0) with f(r  ~73) = _ �89 Since/83 = - 7} is 
a lower bound for the optimal value f .  we have 0 < f ( r  ~/3) _ f .  ~ _�89 + 3 = �88 
Hence  (r is an e-optimal solution with e := �88 
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Addendum 
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(1991). 

Horst, R., Thoai, N. V., and Benson, H. P.: Concave Minimization via Conical Partitions and 
Polyhedral Outer Approximation, Mathematical Programming 50, 259-274 (1991). 

Horst, R., Thoai, N. V., and de Vries, J.: A New Simplicial Cover Technique in Constrained Global 
Optimization, J. Global Optimization 2, 1-19 (1992). 

Horst, R., Thoai, N. V., and de Vries, J.: On Geometry and Convergence of a Class of Simplicial 
Covers, Optimization 25, 53-64 (1992). 

For d.c.-programs: 
Horst, R., Phong, T. Q., and Thoai, N. V.: On Solving General Reverse Convex Programming 

Problems by a Sequence of Linear Programs and Line Searches, Annals of Operations Research 25, 
1-18 (1990). 

Horst, R., Phong, T. Q., Thoai, N. V., and de Vries, J.: On Solving a DC Programming Problem by a 
Sequence of Linear Programs, J. Global Optimization 1, 183-203 (1991). 


